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Abstract

Studies of the effect of a step change in flow rate on the dynamic behaviour of a cascade of continuous stirred tank
electrochemical reactors under galvanostatic and potentiostatic control are reported. The idealized models, stirred
tank and plug flow, are also included as limiting cases. The response of the system in outlet concentration and
current and the time required to reach approximate steady-state values in terms of the number of reactors and

electrochemical parameters are discussed.

List of symbols

a.  specific surface area (m™!)

A magnitude of step change in flow rate (m3 s™!)

C  concentration (mol m~3)

C; concentration of the jth reactor (mol m3)

Cy inlet concentration (mol m3)

Ct concentration of the jth reactor before perturba-
tion (mol m™3)

Da Damkohler number

F  Faraday constant (A s mol~")

H  Heaviside shifting function

i current density (A m?)
total current (A)

I*  total current before perturbation (A)

I;  current of the jth reactor (A)

I¥  current of the jth reactor before

perturbation (A)

kinetic constant (m s~')

electrochemical rate constant (m s~')

constant defined by Equation 17

electrode length (m)

number of tanks in the cascade

volumetric flow rate (m? s~1)

volumetric flow rate before perturbation (m? s~')

Laplace transform operator

2IQI I N

1. Introduction

The dynamics of electrochemical reactors for changes in
flow rate has been scarcely treated in the literature.
Fahidy [1] analysed the effect of flow rate and current
perturbations on the dynamics of tank flow electrolysers

S cross-sectional area of the reactor (m?)

t time (s)

t  time to reach 99% of the steady-state value (s)

T  time constant defined by Equation 13 (s)

v superficial liquid flow velocity (m s™!)

superficial liquid flow velocity before perturbation

(ms™)

volume of the cascade (m?)

axial coordinate (m)

i» mnormalized perturbation variable for outlet con-
centration of the jth reactor in a cascade of n
reactors defined by Equation 3

Y normalized perturbation variable for outlet con-

centration

NS

Greek characters

f  constant given by Equation 9

AC concentration change in the electrochemical reac-
tor after perturbation (mol m~3)

AC* concentration change in the electrochemical reac-
tor before perturbation (mol m~?)

7;  parameter defined by Equation 14

& porosity

ve  charge number of the electrode reaction

cascade residence time (s)

cascade residence time before perturbation (s)

for the cases of single flow electrolyser, the batch
electrolyser with recycle and the electrolyser cascade.
The continuous stirred tank electrochemical reactor
model under galvanostatic operation was adopted and
the control of the current in order to minimize the
concentration variation produced by the flow rate
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perturbation was also discussed. Scott [2] examined the
linearization of the perturbation equations for an
isothermal continuous stirred tank reactor with input
variations in flow rate, concentrations and current
density. Unbehauen and Alatiqi [3] discussed control
of temperature, flow rate, electrode position, voltage
and current and Fleet and Small [4] analysed control
strategies. Work dealing with the dynamic behaviour of
electrochemical systems were summarised in previous
papers from this laboratory, where the modelling of the
startup of a continuous parallel plate electrochemical
reactor [5] was analysed and the dynamic behaviour of
electrochemical reactors for a step change in the inlet
concentration [6] was reported.

In the model reported here the dynamics of a cascade
of n tanks under galvanostatic and potentiostatic
control for a step change in flow rate is analysed. The
aim of this work is to obtain the necessary time to
achieve conditions close to the steady state taking into
account the effect of the kinetics of the electrochemical
reaction and the number of reactors in the cascade.

2. Dynamic behaviour of the tank series model
2.1. Concentration as a function of time

The mass-balance for the jth reactor of a cascade of n
equally sized reactors for all time after the input step
change in flow rate is

v dG()

L;(1)
n8 dt

Vo lF

= 0C;1(1) - 0G(1) — (1)

where the output of the j — 1th reactor flows into the jth
reactor and so forth.

Fort=0"1is
0'CL - 0C — = 2)
t = 0~ indicates that the respective values of C*, O* and

I} apply to points very close to, but not at zero [7].
Defining the perturbation variable

and combining Equations 1 to 3 gives:

20D Ly ) = V() - — (M - ﬁ)

n dt vFAC*\ QO O*
4)
where
T= Ve (5)

the cascade residence time. Equation 4 is valid for
galvanostatic and potentiostatic control.

2.1.1. Potentiostatic control

Assuming that the reactors operate at identical electrode
potentials and considering a first order reaction, the
current drained by the jth reactor in the cascade is given

Vv
1j(6) = ac - vF K C(1) ©)
where
ky
" 1+ Da (7)

kr 1s the electrochemical rate constant which is a function
of potential and temperature and Da is the Damkohler
number [§8]. When Da = 0 the kinetic expression is
truncated to a Tafel equation for a first order reaction and
high values of the Damkohler number indicate an
approach to mass transport controlled rates. It is
assumed that the kinetic constant k is not a function of
the flow rate in order to neglect its variation with time,
due to the fact that a change in flow rate produces a
change in the diffusion layer thickness. Therefore, the
predictions of the model are valid when the electrochem-
ical reaction is charge transfer kinetic controlled or is
under combined diffusion and charge transfer kinetic
control for rotating electrodes, where the effect of the
volumetric flow rate on the mass-transfer coefficient can
be neglected. For static electrodes and reactions under
mass-transfer control the model is valid when the
perturbation in flow rate is small.

Introducing Equation 6, evaluated at r and at 1 =0",
into Equation 4 and rearranging yields

dYi, L
E i:it(t) —+ (1 +fj) Y}'.n(l‘) = Yj*l,n(t) +§Q* AJC,* (8)
where
ka.t
= 9)
and
A=e-¢ (10)

Taking into account Equation 2 and Equation 6,
evaluated at + = 0~, for each reactor of the stack and
adding results

kae
nQ*

*

ZC* (11)

Likewise



C;‘ = L (12)
(1+L2)
Defining
T
T= 13
n+p (13)
and
1
y/ = n J—i (14)
> (1+82)

Introducing Equations 11 and 12 into Equation 8 and
rearranging yields

nA

- =Y, + ==y, 15

d¢ + T J=L ( ) + T Qy] ( )
Laplace transformation of Equation 15 gives

K K Ay
a(s) =——Yi 1, / 16
n(S) 1+ 75/ 1a(s) + 1+ 7550 (16)
where
n
K= 17
n+f (17

Equation 16 can be solved by Laplace transform
inversion for different # and j values. Thus, for j =1 it
is simplified to

K Ay

Yl"n(s) - 1+TssQ

(18)

Solving Equation 18 by Laplace transform inversion
gives

A t
Tialt) = K7 [1—exp(—7)] (19)
For j = 2 Equation 16 gives
K Ayz
Yz-,n(s) 1+TS 1-,7’( )+ 1 +TSSQ ( 0)

Introducing Equation 18 into Equation 20 and rear-
ranging yields

K A
Yz’n(s) < —|—Ts> sle_F

Solving Equation 21 by Laplace transform inversion gives

K A4y,
14+Ts sQ

(21)
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A
Y2,n( ) *Kz())l +y2)

0] K
Ky, t t
X {1— {1 +K—v1 > “/2?} exp(— ?)} (22)

Performing the same procedure for j = 3 gives

A
Balt) = 5K (o4 )
K*), +K t
1+2V1—V2_+
Koy + Ky, + 93T :
N exp(~7)

L Kn (1)2
K2y + Ky, + 93 \T
(23)

From Equations 19, 22 and 23 and solving for other j
values the following general expression can be inferred

A Vi
Yjv"(t) =—K k—1 X
0" &k
IR
3 Vil
- S (t/T) exp(f£>
k! T

2.1.2. Galvanostatic control
From Equation 2 and assuming that the reactors are
electrically connected in series gives

nl; = v.F Q"AC” (25)
Introducing Equation 25 into Equation 4 yields
dY;,. (1) n n A
—_Smr — Y.’ B N 2
S0 = Y0 + (26)

Comparing Equation 15, valid for the potentiostatic
case, with Equation 26, valid for the galvanostatic case,
it is concluded that Equation 15 is simplified to
Equation 26 when f§ = 0. Therefore, the galvanostatic
control can be considered as a singular case of the
potentiostatic control. Thus, for f = 0 and j = n Equa-
tion 24 yields

o S5 ) o )

(27)

Y, n(2)

Equation 27, rearranged in a different manner, was also
given by Fahidy [1].
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2.2. Current as a function of time for
the potentiostatic case

Combining Equations 3 and 6 gives

V
Li(t) — I} = veF kac—AC"Y),(1) (28)
n
The total current in the cascade is given by
16 =" 1(0) (29)
=1

Furthermore, the total mass-balance at t = 0~ yields
I = v.F Q*AC” (30)

Introducing Equation 28 into Equation 29, taking into
account Equation 30 gives

(31)

Evaluating Equation 31 at ff = 0 yields

I(t)=1I" forall ¢ (32)
Therefore, it is demonstrated that all the equations
deduced for the potentiostatic control are valid for the

galvanostatic case when f = 0.

3. Dynamic behaviour of the plug flow model

The dynamics of a plug flow reactor corresponds
to a distributed parameter system. The mass balance
gives

SaC(x, t) _vaC(x, 1) i(x,t)ae

o Ox v (33)
att=0"1is
dC*(x) i*(x)ae
* - _ 4
Y dx VF (34)
Defining
Y(x,t) = Clr,1) - C'(x) (35)

AC*

Combining Equations 33 to 35 gives

acL (i* () i, t))

oY (x, 1) _ _LGY()C7 t)
AC*veF \ v* v

ot Ox

T

Adopting the following expression for the kinetics

i(x,1) = veF k C(x,1) (37)
and introducing Equation 37 evaluated at 7 and at
t = 0~ into Equation 36 yields

A C*(x)

_BY(xat)—’_ﬁ@ AC*

T@Y(x, t)

oY (x,t)
ot ox

=-L (38)

Solving Equation 34 taking into account Equation 37
evaluated at r = 0~ yields

C*(x) = Cyexp ( B;x)

(39)

Evaluating Equation 39 at x = L and rearranging yields

)

Introducing Equations 39 and 40 into Equation 38 gives

AC* = G, (1 —exp (— (40)

TaY(x,t) _ _LaY(x,t)

ot Ox

- ﬁY(x, t)

(41)

0 - exp(— ﬁ;)
with the following initial and boundary conditions

t=0 Y(x,0)=0 forallx
x=0 Y(x,t)=0 forallz

(41a)
(41b)

Laplace transformation of Equation 41 gives
pa on(-"7)

;Q* 1 - exp(—%)
(42)

Solving Equation 42 by Laplace transform inversion
gives

exp(~52) {exp[~B(1 - £) 1] 1)

Y(x,1) = l—exp(—ﬂ—?)
en(=8) {1 —ew[-£0 -5 9]}
l—exp(—@)
xH(t—)%) (43)
with
H(t—)%g) —0 <x_8 (43a)
H( —"78) —1 t>"78 (43b)



Evaluating Equation 43 at x = L for # < 7 yields

exp(— L) {exp[-B(1 - )1 1}

Y(L,1) = ; (44)
1 - exp(— ﬂ%)
Evaluating Equation 43 at x = L and ¢ >7 gives
exp(—f) — exp(— L)
Y(L,t) = - (45)
1 —exp (— ﬁ%)
For f = 0 Equation 44 is simplified to
At
Y(L t) =—- 46
L0 =75: (46)
Analogously, for f = 0 Equation 45 yields
A
Y(L,t)=—= 47
(L,1) 0 (47)
The total current is given by
L
(1) = a8 / i(x, ) d (48)
0
Combining Equations 35, 37 and 48 gives
L
1) = I* = veFkaoSAC* / Y (x,£) dx (49)

0

Introducing the total mass-balance at t = 0~, Equation
30, into Equation 49 and rearranging produces

L
I(ty-1" pr*
[7*: LT/Y(X,t)dx
0

(50)

Introducing Equation 43 into Equation 50 and inte-
grating yields

-1 1= exp(—pY)

I* © 1 —exp(—B%)

exp(—42)
1 —exp(—B%)

Tt
x{l—exp[ﬁ?(;—lﬂ}—l (51)
For ¢t = 7 Equation 51 is reduced to
I(7) -1 T 1 —exp(—pf) 1 (52)

I* 71 —exp(—pL)

For f — 0 Equation 51 approaches Equation 32.
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4. Results and discussion

Figure 1 shows the response of electrochemical reactors
according to the tank series model under galvanostatic
control, Equation 27, for a step change in the flow rate.
Thus, the difference between the outlet concentration at
time ¢ and the outlet concentration before the pertur-
bation related to the change of concentration between
inlet and outlet before the perturbation as a function of
the normalized time, ¢/7, is plotted. The behaviour of
the plug-flow model under the same conditions, Equa-
tions 46 and 47, is also given. As expected, when the
number of reactors increases the performance of the
tank series model approaches the plug-flow model.
Likewise, for high ¢ values the electrochemical system
approaches a constant independent of the number of
reactors in the stack.

Figures 2 and 3 show typical responses of the tank
series model, Equation 24 for j = n, taking into account
Equations 13 and 17, and the plug-flow model, Equa-
tions 44 and 45, under potentiostatic control for
different f values. Again, at high ¢ values the tank
series model approaches a limiting value, but the
limiting value depends on the reactor number in the
stack. This behaviour can be explained taking into
account that under potentiostatic control the reaction
rate depends on the concentration.

Taking into account Equation 3 for j = n or Equation
35 evaluated at x = L, Y can be rearranged to give

AC

Y=1-
AC*

(53)

when 4 > 0 Figures 1 to 3 show that Y is lower than one
and AC is lower than AC* because the residence time in

0.6 . . : ,
0.4
S
N
02}
0.0 - ' . :
0 1 2 3

t/t

Fig. 1. Transient response in outlet concentration. Galvanostatic
control. 4/Q = 0.5. Key (lower to upper curve): ( )L, (--—-) 2,
(-=---- )3, (=memem N CEREERES )8and (------ ) 50 reactors; (-------) plug
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(1)

t/t

Fig. 2. Transient response in outlet concentration. Potentiostatic

the cascade is decreased. Likewise, when f increases Y
decreases and a step change in flow rate has a less
significant influence on the dynamic behaviour.

Figures 4 and 5 show the response in current of the
studied systems, (Equations 31 and 51) for different f
values. The transient behaviour in current takes place
for ¢/t < 2, depending on the f value. At ¢ — oo the
variation in the current related to the initial current
approaches a constant value. But, unlike the case of a
step change in the inlet concentration [6], the constant
value depends on both n and p.

Figures 1-5 show that a cascade of electrochemical
reactors achieves steady state at ¢t — oo. From a
practical point of view it is interesting to know the
necessary time to achieve conditions close to steady
state. Thus, a time £, termed the stabilization time,

0.10 : ,
| n=1
0.08 .
0.06 2 i
S :
004 b [ 7 T ]
: 4
0.02 10 4
' 30
Plug flow 1
0.00 E ,
0 1 2

Fig. 3. Transient response in outlet concentration. Potentiostatic con-
trol. f=5.4/0 =0.5.

0.5 T

*

I/ -1

0.0 . L .
0 1 2
t/r

Fig. 4. Transient response in current. Potentiostatic control. = 1.
A/Q = 0.5 Key: () 1, (-==7) 2, (mmrs) 4, (oo )10and (- -~ --)
30 reactors; (-++--- ) plug flow.

where the response of the system is 99% of the steady
state value may be defined. Figure 6 shows the time ¢
normalized with respect to 7 as a function of n» and .
The results shown in Figure 6 are similar to those
obtained for a step change in inlet concentration [6]. For
a given value of n the normalized stabilization time
always decreases when f increases. For high values of n
and f the stabilization time approaches the reactor
residence time. However, for a given [ value £/7
decreases with n when f is small and increases with n
for high f values. The results of Figure 6 are re-plotted
in Figure 7 by using a contour plotting routine to
produce iso- f#;/t profiles. Figure 7 allows a simple
estimation of the stabilization time of a cascade of
electrochemical reactors.

1.0 F — ; 3

0.4

0.2

0 1 2
t/t

0.0

Fig. 5. Transient response in current. Potentiostatic control.
A/Q = 0.5. Key: as for Figure 4.



Fig. 6. Time to reach the 99% of the steady state outlet concentration
normalized by the cascade residence time as a function of f and the
number of reactors in the cascade.
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