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Abstract

Studies of the e�ect of a step change in ¯ow rate on the dynamic behaviour of a cascade of continuous stirred tank
electrochemical reactors under galvanostatic and potentiostatic control are reported. The idealized models, stirred
tank and plug ¯ow, are also included as limiting cases. The response of the system in outlet concentration and
current and the time required to reach approximate steady-state values in terms of the number of reactors and
electrochemical parameters are discussed.

1. Introduction

The dynamics of electrochemical reactors for changes in
¯ow rate has been scarcely treated in the literature.
Fahidy [1] analysed the e�ect of ¯ow rate and current
perturbations on the dynamics of tank ¯ow electrolysers

for the cases of single ¯ow electrolyser, the batch
electrolyser with recycle and the electrolyser cascade.
The continuous stirred tank electrochemical reactor
model under galvanostatic operation was adopted and
the control of the current in order to minimize the
concentration variation produced by the ¯ow rate

List of symbols

ae speci®c surface area (mÿ1)
A magnitude of step change in ¯ow rate (m3 sÿ1)
C concentration (mol mÿ3)
Cj concentration of the jth reactor (mol mÿ3)
C0 inlet concentration (mol mÿ3)
C�j concentration of the jth reactor before perturba-

tion (mol mÿ3)
Da DamkoÈ hler number
F Faraday constant (A s molÿ1)
H Heaviside shifting function
i current density (A mÿ2)
I total current (A)
I� total current before perturbation (A)
Ij current of the jth reactor (A)
I�j current of the jth reactor before

perturbation (A)
k kinetic constant (m sÿ1)
kf electrochemical rate constant (m sÿ1)
K constant de®ned by Equation 17
L electrode length (m)
n number of tanks in the cascade
Q volumetric ¯ow rate (m3 sÿ1)
Q� volumetric ¯ow rate before perturbation (m3 sÿ1)
s Laplace transform operator

S cross-sectional area of the reactor (m2)
t time (s)
ts time to reach 99% of the steady-state value (s)
T time constant de®ned by Equation 13 (s)
m super®cial liquid ¯ow velocity (m sÿ1)
m� super®cial liquid ¯ow velocity before perturbation

(m sÿ1)
V volume of the cascade (m3)
x axial coordinate (m)
Yj;n normalized perturbation variable for outlet con-

centration of the jth reactor in a cascade of n
reactors de®ned by Equation 3

Y normalized perturbation variable for outlet con-
centration

Greek characters
b constant given by Equation 9
DC concentration change in the electrochemical reac-

tor after perturbation (mol mÿ3)
DC� concentration change in the electrochemical reac-

tor before perturbation (mol mÿ3)
cj parameter de®ned by Equation 14
e porosity
me charge number of the electrode reaction
s cascade residence time (s)
s� cascade residence time before perturbation (s)
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perturbation was also discussed. Scott [2] examined the
linearization of the perturbation equations for an
isothermal continuous stirred tank reactor with input
variations in ¯ow rate, concentrations and current
density. Unbehauen and Alatiqi [3] discussed control
of temperature, ¯ow rate, electrode position, voltage
and current and Fleet and Small [4] analysed control
strategies. Work dealing with the dynamic behaviour of
electrochemical systems were summarised in previous
papers from this laboratory, where the modelling of the
startup of a continuous parallel plate electrochemical
reactor [5] was analysed and the dynamic behaviour of
electrochemical reactors for a step change in the inlet
concentration [6] was reported.
In the model reported here the dynamics of a cascade

of n tanks under galvanostatic and potentiostatic
control for a step change in ¯ow rate is analysed. The
aim of this work is to obtain the necessary time to
achieve conditions close to the steady state taking into
account the e�ect of the kinetics of the electrochemical
reaction and the number of reactors in the cascade.

2. Dynamic behaviour of the tank series model

2.1. Concentration as a function of time

The mass-balance for the jth reactor of a cascade of n
equally sized reactors for all time after the input step
change in ¯ow rate is

V
n

e
dCj�t�
dt

� QCjÿ1�t� ÿ QCj�t� ÿ Ij�t�
meF

�1�

where the output of the jÿ 1th reactor ¯ows into the jth
reactor and so forth.
For t � 0ÿ is

Q�C�jÿ1 ÿ Q�C�j ÿ
I�j
meF
� 0 �2�

t � 0ÿ indicates that the respective values of C�, Q� and
I�j apply to points very close to, but not at zero [7].
De®ning the perturbation variable

Yj;n�t� �
Cj�t� ÿ C�j

DC�
�3�

and combining Equations 1 to 3 gives:

s
n
dYj;n�t�

dt
� Yj;n�t� � Yjÿ1;n�t� ÿ 1

meF DC�
Ij�t�

Q
ÿ I�j

Q�

� �
�4�

where

s � V e
Q

�5�

the cascade residence time. Equation 4 is valid for
galvanostatic and potentiostatic control.

2.1.1. Potentiostatic control
Assuming that the reactors operate at identical electrode
potentials and considering a ®rst order reaction, the
current drained by the jth reactor in the cascade is given
by

Ij�t� � ae
V
n

meF k Cj�t� �6�

where

k � kf
1� Da

�7�

kf is the electrochemical rate constant which is a function
of potential and temperature and Da is the DamkoÈ hler
number [8]. When Da = 0 the kinetic expression is
truncated to aTafel equation for a ®rst order reaction and
high values of the DamkoÈ hler number indicate an
approach to mass transport controlled rates. It is
assumed that the kinetic constant k is not a function of
the ¯ow rate in order to neglect its variation with time,
due to the fact that a change in ¯ow rate produces a
change in the di�usion layer thickness. Therefore, the
predictions of the model are valid when the electrochem-
ical reaction is charge transfer kinetic controlled or is
under combined di�usion and charge transfer kinetic
control for rotating electrodes, where the e�ect of the
volumetric ¯ow rate on the mass-transfer coe�cient can
be neglected. For static electrodes and reactions under
mass-transfer control the model is valid when the
perturbation in ¯ow rate is small.
Introducing Equation 6, evaluated at t and at t � 0ÿ,

into Equation 4 and rearranging yields

s
n
dYj;n�t�

dt
� 1� b

n

� �
Yj;n�t� � Yjÿ1;n�t� � b

n

A C�j
Q� DC�

�8�

where

b � k ae s
e

�9�

and

A � Qÿ Q� �10�

Taking into account Equation 2 and Equation 6,
evaluated at t � 0ÿ, for each reactor of the stack and
adding results

DC� � k ae V
n Q�

Xn

i�1
C�i �11�

Likewise
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C�j �
C0

1� b s�
n s

� �j �12�

De®ning

T � s
n� b

�13�

and

cj �
1Pn

i�1
1� b s�

n s

� �jÿi �14�

Introducing Equations 11 and 12 into Equation 8 and
rearranging yields

dYj;n�t�
dt

� Yj;n�t�
T
� n

s
Yjÿ1;n�t� � n

s
A
Q

cj �15�

Laplace transformation of Equation 15 gives

Yj;n�s� � K
1� Ts

Yjÿ1;n�s� � K
1� Ts

A cj

s Q
�16�

where

K � n
n� b

�17�

Equation 16 can be solved by Laplace transform
inversion for di�erent n and j values. Thus, for j =1 it
is simpli®ed to

Y1;n�s� � K
1� Ts

A c1
s Q

�18�

Solving Equation 18 by Laplace transform inversion
gives

Y1;n�t� � A
Q

K c1 1ÿ exp ÿ t
T

� �h i
�19�

For j = 2 Equation 16 gives

Y2;n�s� � K
1� Ts

Y1;n�s� � K
1� Ts

A c2
s Q

�20�

Introducing Equation 18 into Equation 20 and rear-
ranging yields

Y2;n�s� � K
1� Ts

� �2A c1
s Q
� K
1� Ts

A c2
s Q

�21�

SolvingEquation 21 byLaplace transform inversion gives

Y2;n�t� � A
Q

K2 c1 �
c2
K

� �
� 1ÿ 1� Kc1

Kc1 � c2

t
T

� �
exp ÿ t

T

� �� �
�22�

Performing the same procedure for j � 3 gives

Y3;n�t� � A
Q

K3 c1 �
c2
K
� c3

K2

� �
�

� 1ÿ
1� K2c1 � Kc2

K2c1 � Kc2 � c3

t
T
�

� K2c1
K2c1 � Kc2 � c3

t
T

� �2
266664

377775 exp ÿ t
T

� �
8>>>><>>>>:

9>>>>=>>>>;
�23�

From Equations 19, 22 and 23 and solving for other j
values the following general expression can be inferred

Yj;n�t� � A
Q

Kj
Xj

k�1

ck

Kkÿ1�

� 1ÿ
Xjÿ1
k�0

Pj
h�k�1

cj�1ÿhKhÿ1

Pj
h�1

chKjÿh

t=T� �k
k!

26664
37775 exp ÿ t

T

� �8>>><>>>:
9>>>=>>>;
�24�

2.1.2. Galvanostatic control
From Equation 2 and assuming that the reactors are
electrically connected in series gives

nI�j � meF Q�DC� �25�

Introducing Equation 25 into Equation 4 yields

dYj;n�t�
dt

� n
s

Yj;n�t� � n
s

Yjÿ1;n�t� � A
sQ

�26�

Comparing Equation 15, valid for the potentiostatic
case, with Equation 26, valid for the galvanostatic case,
it is concluded that Equation 15 is simpli®ed to
Equation 26 when b � 0. Therefore, the galvanostatic
control can be considered as a singular case of the
potentiostatic control. Thus, for b � 0 and j � n Equa-
tion 24 yields

Yn;n�t� � A
Q

1ÿ
Xnÿ1
k�0

nÿ k
nk!

t
s=n

� �k
" #(

exp ÿ t
s=n

� ��
�27�

Equation 27, rearranged in a di�erent manner, was also
given by Fahidy [1].
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2.2. Current as a function of time for
the potentiostatic case

Combining Equations 3 and 6 gives

Ij�t� ÿ I�j � meF k ae
V
n

DC�Yj;n�t� �28�

The total current in the cascade is given by

I�t� �
Xn

j�1
Ij�t� �29�

Furthermore, the total mass-balance at t � 0ÿ yields

I� � meF Q�DC� �30�

Introducing Equation 28 into Equation 29, taking into
account Equation 30 gives

I�t� ÿ I�

I�
� bs�

ns

Xn

j�1
Yj;n�t� �31�

Evaluating Equation 31 at b � 0 yields

I�t� � I� for all t �32�

Therefore, it is demonstrated that all the equations
deduced for the potentiostatic control are valid for the
galvanostatic case when b � 0.

3. Dynamic behaviour of the plug ¯ow model

The dynamics of a plug ¯ow reactor corresponds
to a distributed parameter system. The mass balance
gives

e
oC�x; t�

ot
� ÿm

oC�x; t�
ox

ÿ i�x; t�ae
meF

�33�

at t � 0ÿ is

m�
dC��x�
dx

� ÿ i��x�ae

meF
�34�

De®ning

Y �x; t� � C�x; t� ÿ C��x�
DC�

�35�

Combining Equations 33 to 35 gives

s
oY �x; t�

ot
� ÿ L

oY �x; t�
ox

� aeL
DC�meF

i��x�
m�
ÿ i�x; t�

m

� �
�36�

Adopting the following expression for the kinetics

i�x; t� � meF k C�x; t� �37�

and introducing Equation 37 evaluated at t and at
t � 0ÿ into Equation 36 yields

s
oY �x; t�

ot
� ÿL

oY �x; t�
ox

ÿ bY �x; t� � b
A

Q�
C��x�
DC�

�38�

Solving Equation 34 taking into account Equation 37
evaluated at t � 0ÿ yields

C��x� � C0 exp ÿ bs�x
sL

� �
�39�

Evaluating Equation 39 at x � L and rearranging yields

DC� � C0 1ÿ exp ÿ bs�

s

� �� �
�40�

Introducing Equations 39 and 40 into Equation 38 gives

s
oY �x; t�

ot
� ÿ L

oY �x; t�
ox

ÿ bY �x; t�

� b
A

Q�
exp ÿ bs�x

sL

� �
1ÿ exp ÿ bs�

s

� � �41�

with the following initial and boundary conditions

t � 0 Y �x; t� � 0 for all x �41a�
x � 0 Y �x; t� � 0 for all t �41b�

Laplace transformation of Equation 41 gives

L
dY �x; s�

dx
� �ss� b�Y �x; s� � b

s
A

Q�
exp ÿ bs�x

sL

� �
1ÿ exp ÿ bs�

s

� �
�42�

Solving Equation 42 by Laplace transform inversion
gives

Y �x; t� �
exp ÿ bs�x

sL

� �
exp ÿb 1ÿ s�

s

ÿ �
t
s

� �ÿ 1
� 	

1ÿ exp ÿ bs�
s

� �
�
exp ÿ bx

L

� �
1ÿ exp ÿ b

s 1ÿ s�
s

ÿ �
t ÿ xe

m

ÿ �h in o
1ÿ exp ÿ bs�

s

� �
� H t ÿ xe

m

� �
�43�

with

H t ÿ xe
m

� �
� 0 t <

xe
m

�43a�

H t ÿ xe
m

� �
� 1 tP

xe
m

�43b�
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Evaluating Equation 43 at x � L for t < s yields

Y �L; t� �
exp ÿ bs�

s

� �
exp ÿb 1ÿ s�

s

ÿ �
t
s

� �ÿ 1
� 	
1ÿ exp ÿ bs�

s

� � �44�

Evaluating Equation 43 at x � L and tPs gives

Y �L; t� �
exp�ÿb� ÿ exp ÿ bs�

s

� �
1ÿ exp ÿ bs�

s

� � �45�

For b � 0 Equation 44 is simpli®ed to

Y �L; t� � A
Q

t
s

�46�

Analogously, for b � 0 Equation 45 yields

Y �L; t� � A
Q

�47�

The total current is given by

I�t� � aeS
ZL

0

i�x; t� dx �48�

Combining Equations 35, 37 and 48 gives

I�t� ÿ I� � meFkaeSDC�
ZL

0

Y �x; t� dx �49�

Introducing the total mass-balance at t � 0ÿ, Equation
30, into Equation 49 and rearranging produces

I�t� ÿ I�

I�
� bs�

Ls

ZL

0

Y �x; t� dx �50�

Introducing Equation 43 into Equation 50 and inte-
grating yields

I�t� ÿ I�

I�
� s�

s

1ÿ exp ÿb t
s

ÿ �
1ÿ exp ÿb s�

s

ÿ �� exp ÿb t
s

ÿ �
1ÿ exp ÿb s�

s

ÿ �
� 1ÿ exp b

s�

s
t
s
ÿ 1

� �� �� �
ÿ 1 �51�

For t � s Equation 51 is reduced to

I�s� ÿ I�

I�
� s�

s
1ÿ exp�ÿb�
1ÿ exp ÿb s�

s

ÿ �ÿ 1 �52�

For b! 0 Equation 51 approaches Equation 32.

4. Results and discussion

Figure 1 shows the response of electrochemical reactors
according to the tank series model under galvanostatic
control, Equation 27, for a step change in the ¯ow rate.
Thus, the di�erence between the outlet concentration at
time t and the outlet concentration before the pertur-
bation related to the change of concentration between
inlet and outlet before the perturbation as a function of
the normalized time, t=s, is plotted. The behaviour of
the plug-¯ow model under the same conditions, Equa-
tions 46 and 47, is also given. As expected, when the
number of reactors increases the performance of the
tank series model approaches the plug-¯ow model.
Likewise, for high t values the electrochemical system
approaches a constant independent of the number of
reactors in the stack.
Figures 2 and 3 show typical responses of the tank

series model, Equation 24 for j � n, taking into account
Equations 13 and 17, and the plug-¯ow model, Equa-
tions 44 and 45, under potentiostatic control for
di�erent b values. Again, at high t values the tank
series model approaches a limiting value, but the
limiting value depends on the reactor number in the
stack. This behaviour can be explained taking into
account that under potentiostatic control the reaction
rate depends on the concentration.
Taking into account Equation 3 for j � n or Equation

35 evaluated at x � L, Y can be rearranged to give

Y � 1ÿ DC
DC�

�53�

when A > 0 Figures 1 to 3 show that Y is lower than one
and DC is lower than DC� because the residence time in

Fig. 1. Transient response in outlet concentration. Galvanostatic

control. A=Q � 0:5. Key (lower to upper curve): (ÐÐ) 1, (± ± ±) 2,

(- - - - - -) 3, (-�-�-�-) 4, (� � � � � � ��) 8 and (- - - - - -) 50 reactors; (-��-��-) plug
¯ow.
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the cascade is decreased. Likewise, when b increases Y
decreases and a step change in ¯ow rate has a less
signi®cant in¯uence on the dynamic behaviour.
Figures 4 and 5 show the response in current of the

studied systems, (Equations 31 and 51) for di�erent b
values. The transient behaviour in current takes place
for t=s < 2, depending on the b value. At t!1 the
variation in the current related to the initial current
approaches a constant value. But, unlike the case of a
step change in the inlet concentration [6], the constant
value depends on both n and b.
Figures 1±5 show that a cascade of electrochemical

reactors achieves steady state at t!1. From a
practical point of view it is interesting to know the
necessary time to achieve conditions close to steady
state. Thus, a time ts, termed the stabilization time,

where the response of the system is 99% of the steady
state value may be de®ned. Figure 6 shows the time ts
normalized with respect to s as a function of n and b.
The results shown in Figure 6 are similar to those
obtained for a step change in inlet concentration [6]. For
a given value of n the normalized stabilization time
always decreases when b increases. For high values of n
and b the stabilization time approaches the reactor
residence time. However, for a given b value ts=s
decreases with n when b is small and increases with n
for high b values. The results of Figure 6 are re-plotted
in Figure 7 by using a contour plotting routine to
produce iso- ts=s pro®les. Figure 7 allows a simple
estimation of the stabilization time of a cascade of
electrochemical reactors.

Fig. 2. Transient response in outlet concentration. Potentiostatic

control. b � 1. A=Q � 0:5. Key: (ÐÐ) 1, (± ± ±) 2, (- - - - -) 3, (-�-�-�-)
4, (� � � � ��) 10 and (- �� - �� -) 30 reactors; (-��-��-) plug ¯ow.

Fig. 3. Transient response in outlet concentration. Potentiostatic con-

trol. b � 5. A=Q � 0:5.

Fig. 4. Transient response in current. Potentiostatic control. b � 1.

A=Q � 0:5. Key: (ÐÐ) 1, (- - - -) 2, (-�-�-�-) 4, (� � � � � � ��) 10 and (- - - - -)

30 reactors; (-��-��-) plug ¯ow.

Fig. 5. Transient response in current. Potentiostatic control. b � 5.

A=Q � 0:5. Key: as for Figure 4.
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